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Abstract
Accurate mapping of next-generation sequencing (NGS) reads to reference genomes is

crucial for almost all NGS applications and downstream analyses. Various repetitive ele-

ments in human and other higher eukaryotic genomes contribute in large part to ambigu-

ously (non-uniquely) mapped reads. Most available NGS aligners attempt to address this

by either removing all non-uniquely mapping reads, or reporting one random or "best" hit

based on simple heuristics. Accurate estimation of the mapping quality of NGS reads is

therefore critical albeit completely lacking at present. Here we developed a generalized

software toolkit "AlignerBoost", which utilizes a Bayesian-based framework to accurately

estimate mapping quality of ambiguously mapped NGS reads. We tested AlignerBoost with

both simulated and real DNA-seq and RNA-seq datasets at various thresholds. In most

cases, but especially for reads falling within repetitive regions, AlignerBoost dramatically

increases the mapping precision of modern NGS aligners without significantly compromis-

ing the sensitivity even without mapping quality filters. When using higher mapping quality

cutoffs, AlignerBoost achieves a much lower false mapping rate while exhibiting compara-

ble or higher sensitivity compared to the aligner default modes, therefore significantly

boosting the detection power of NGS aligners even using extreme thresholds. AlignerBoost

is also SNP-aware, and higher quality alignments can be achieved if provided with known

SNPs. AlignerBoost’s algorithm is computationally efficient, and can process one million

alignments within 30 seconds on a typical desktop computer. AlignerBoost is implemented

as a uniform Java application and is freely available at https://github.com/Grice-Lab/

AlignerBoost.

“This is a PLOS Computational Biology Software paper.”
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Introduction

Numerous genome-scale experimental applications are now possible due to the advent of
high throughput, low cost next-generation sequencing (NGS) platforms, including genome
sequencing/re-sequencing,gene expression profiling, mRNA splicing prediction/characteriza-
tion, SNP identification and genotyping, and disease-associatedvariant identification. Accurate
mapping of NGS reads to reference genomes is critical to all of these applications. Many public
or commercial NGS read mapping programs (“aligners”) are available, most of which utilize a
"seed-search" first strategy to allow ultra-fast processing. The most commonly used algorithms
for seed-search are Hash-index (e.g. MAQ, GSNAP, SRMapper, mrsFAST-Ultra, SeqAlto [1–
5]), "Burrows-Wheeler Transform" (e.g. Bowtie/Bowtie2,BWA, SOAP2 [6–10]), un-com-
pressed tries (e.g. STAR [11]), or a mixture of the above (e.g. YOABS [12]). These seed-search
algorithms usually use relatively small segments of the reads ("seeds") to initiate mapping, due
to large RAM requirements to build the index. They then attempt to extend the mapping either
by naive comparison or local Smith-Waterman alignment algorithm [1–4, 6–12]. Theoretically,
the use of relatively small "seeds" should provide enough uniqueness (or mapping precision)
even for very large genomes. In reality however, most genomes, especially those of higher
eukaryotes, are enrichedwith various large and highly similar repetitive elements, such as pseu-
dogenes, paralog gene families, transposable elements, tandem repeats and sequences encoding
repeat RNAs. This often leads to multiple hits in the "seed-search" stage and subsequent ambig-
uously mapped reads for most real NGS datasets, even those designed to target exome regions.
In fact, certain NGS aligners treat seeds in highly repetitive regions as “high complexity” and
ignore them by default. However, some repetitive elements in the human genome can have an
overwhelming high copy number. For example, some human pseudogene classes may have
more than 500 copies of over 3,000 bp; a few human SINE retrotransposon families may
have over 100,000 copies of about 300 bp. In these repetitive regions, a “low complexity” seed
might not even exist, leading to biased mapping in favor of these regions and subsequent false
mapping.

Incorrect mapping of NGS reads may cause many problems in downstream data analyses,
including biased genome/transcriptome profiling, false prediction of novel genes/transcripts,
false SNP prediction, or even identification of false disease variations [13, 14]. Most current
NGS aligners attempt to address this problem by either removing or suppressing all multiple-
mapped reads [6], reporting a random hit [7], or reporting a "best" hit [2, 8, 9, 12]. However, all
currently available “best hit” methods are based on heuristic instead of strict statistical infer-
ence, such as number of seed mismatches or Smith-Waterman alignment scores, whose effect
haven't been proven for finding the correct mapping loci.

Here we present AlignerBoost, a generalized software toolkit suitable for most NGS studies
requiring alignment to a reference genome. AlignerBoost significantly increases mapping pre-
cision of NGS aligners, without significantly decreasing the mapping sensitivity when only con-
sidering the best hits, especially for reads generated from repeat regions. AlignerBoost achieves
this by first tuning NGS aligners to report all potential alignments, then utilizes a Bayesian-
based framework to accurately estimate the mapping quality of ambiguously mapped reads.

Results

We tested AlignerBoostwith both simulated and real datasets under various combinations of
experimental strategies. Since it is very difficult to determine whether a read from a real dataset
is mapped correctly, we first generated synthetic NGS datasets under complex sequencing
error models (see below). It is noteworthy that we didn’t choose published software for this
purpose, such as SlnC [15], XS [16], GemSIM [17], or ART [18], because to our knowledge,
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they do not support generating simulated reads in designated regions of the genome as our pro-
cedures do. For all datasets, we tested the overall mapping precision (positive prediction value,
or PPV = TP/(TP + FP) and sensitivity (true positive rate, or TPR = TP/(TP + FN)) for
AlignerBoostwith various NGS aligners, and compared the AlignerBoost filtered results to the
default "best" outputs (S1 Table). To calculate the mapping precision and sensitivity, a “cor-
rect-mapping” is defined as aligned boundaries that are within +/- 20% of the true locus rela-
tive to the alignment length. The exact definition of a true locus is explained for simulated and
real datasets separately below.

Simulated DNA-seq datasets

We generated simulated DNA-seq datasets with a complex sequencing error model by the fol-
lowing procedures: (1) Random genomic regions with particular genetic features are drawn
from uniform distributed locations and truncated Gaussian size-distributions; (2) Genomic
single-end (SE) or paired-end (PE) reads with given size are extracted from these regions; (3)
Simulated base qualities (sequencing errors) are randomly drawn from Gaussian distributions
with fixed mean qualities at seed regions and progressively decreasing means at subsequent
bases both with fixed standard-deviations, for forward and reverse reads independently; (4)
Original reads are then subjected to a mutation process for substitutions, insertions, and dele-
tions according to designated base qualities. The resulting simulated NGS datasets have many
common features of datasets produced by modernNGS sequencing platforms, such as variable
base qualities both for different reads and different positions (S1 Fig). To mimic different
experimental designs, we generated four simulated DNA-seq datasets of four different genetic
features, namely total genome (Genome), RefSeq gene exons (RefExome), VegaPseudogenes
(Pseudogene), and Repeat-Masker annotated Transposable Elements (RMSK). Detailed
parameters for generating these simulated NGS datasets can be found in S2 Table.

We mapped all simulated datasets with or without using AlignerBoost coupled with 4 NGS
aligners, namely SeqAlto [5], Bowtie [6], Bowtie2 [7] and BWA-MEM (abbreviated to “BWA”
hereafter) [8, 9], then compared the “best” alignments (with highest mapQ values) between
AlignerBoost filtered or the program’s default outputs. In general, the filtered results achieved
much higher mapping precision (most times>97%) without significantly losing sensitivity
(sometimes even with increased sensitivity) compared to the "default" results (Fig 1, S3 and S4
Tables), regardless of which type of aligner was used. This is especially true for the repeat-rich
datasets, i.e. pseudogenes and RMSK, where the precision gain can be very profound (up to
~15%). As expected, for PE-reads the default method already yielded reasonably goodmapping
precision especially for genome and RefExome datasets, yet AlignerBoost achieved even higher
precision (mostly>98%) and with no sensitivity losses (Fig 1E–1H and S4 Table). Therefore,
AlignerBoost is suitable for most, if not all, NGS experimental designs, especially for those with
many repeat-oriented sequences and relatively short read length. It is of note that some align-
ers, such as SeqAlto and BWA, don’t support multiple mapping under PE mode, and were
therefore not tested under these scenarios.

It is not uncommon that extremely high precision alignment is required, such as when call-
ing disease-related genetic variations. Since most modernNGS aligners report variable empiri-
cal mapQ values, we sought to test the read mapping performance of AlignerBoost (regarding
the sensitivity and FDR (1- precision)) by applying a minimum mapQ cutoff at different
thresholds (Fig 2). Strikingly, AlignerBoost achieves up-to one order of magnitude lower FDR
rate toward the very strict end of the mapQ cutoff threshold, while maintaining an equivalent
or even higher sensitivity, for all 4 simulated datasets (Fig 2A–2D). Similar mapping perfor-
mance improvements were observed for the PE datasets, where we only tested those aligners
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supporting multiple mapped reads under PE mode (Fig 2E–2H). The simultaneous gain of pre-
cision and sensitivity is very profound for aligners known to be able to carry out near-exhaus-
tive searches (e.g. Bowtie2 and BWA), suggesting it is a good combination to use AlignerBoost
with highly sensitive NGS aligners.

Simulated RNA-seq datasets

Another widely used NGS application is RNA-seq, which has added complexity regarding read
mapping, including exon/intron junction handling and post-transcriptionmodifications, such
as polyadenylation and editing. These complexities can lead to improper partial alignments
between the non-genomic parts of the reads to the genome, especially for those aligners that do
not implement the Smith-Waterman local alignment algorithm. To test this, we generated sim-
ulated RNA-seq datasets (both SE and PE) from RefSeqmRNAs (refGenes) using a similar
procedure as for the DNA-seq datasets, with the exception that random regions were drawn
directly from spliced RefSeqmRNAs instead of the genome (S2 Table). We then did similar
comparisons as above but with additional NGS aligners, including two dedicated RNA-seq
aligners, Tophat2 and STAR, which can handle splicing-junction alignments [11, 19]. We also

Fig 1. Mapping sensitivity and precision of simulated DNA-seq datasets by picking “best” hits using AlignerBoost filtering

procedures (AlignerBoost) or the aligner’s default best mode (Default). A-D: Single-end (SE) mapping; E-H: Paired-end (PE)

mapping; A/E, B/F, C/G, D/H: SE/PE results for Genome, RefExome, Pseudogene and RMSK simulated datasets, respectively.

doi:10.1371/journal.pcbi.1005096.g001
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enabled the "1DP" feature (see Methods) for aligners without local-alignment algorithm sup-
port for the reasons explained above.

Similar to the DNA-seq dataset results, AlignerBoost achieves significantly higher precision
compared to the default results for all aligners tested and for both SE and PE reads (Fig 3, S5
and S6 Tables). Surprisingly, it often increases the mapping sensitivity as well, especially for
DNA-seq aligners (Fig 3), suggesting that the default mode of these aligners for RNA-seq reads
are not optimal when compared to the AlignerBoost fine-tuned options.

We also tested AlignerBoostperformance under different mapQ cut-offs for the RNA-seq
dataset (Fig 4). As expected,AlignerBoost achieves 1–2 orders of magnitude smaller FDR with-
out significantly losing (sometimes even strongly gaining) mapping sensitivity, which is even
true for the PE-reads (Fig 4B). Notably by using AlignerBoost, the overall mapping quality
(regarding sensitivity and FDR) of the DNA-seq aligners is comparable to the dedicated RNA-
seq aligners, suggesting that it is technically practical to use DNA-seq aligners along with
AlignerBoost for RNA-seq mapping purposes, especially in cases that reliable annotation of

Fig 2. The mapping sensitivity vs. False Discovery Rate (FDR) curves under different mapping quality (mapQ) cutoffs for the

simulated DNA-seq datasets. The mapQ varies from 0, 3, 6, 10, 13, 20, then in increments of 10 up to the maximum allowed values of the

indicated aligner. “Default” indicates aligners’ default best hits; “AlignerBoost” indicates best hits via AlignerBoost mapping and filtering

procedures. A-D: Single-end (SE) mapping; E-H: Paired-end (PE) mapping; A/E: Genome, B/F: RefExome, C/G: Pseudogene, D/H:

RMSK.

doi:10.1371/journal.pcbi.1005096.g002
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Fig 3. Mapping sensitivity and precision of simulated RNA-seq datasets by picking “best” hits using

AlignerBoost filtering procedures (AlignerBoost) or the aligner’s default best mode (Default). A:

Single-end (SE) mapping; B: Paired-end (PE) mapping.

doi:10.1371/journal.pcbi.1005096.g003

AlignerBoost Software Toolkit

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005096 October 5, 2016 6 / 20



splicing isoforms is not available, and the RNA-seq experiments servemainly as a Next-Gen
approach to determine differential gene expression.

Real datasets

Real experimentalNGS datasets are much more complicated than simulated datasets; besides
sequencing error, incorrectmapping could be caused by SNP, CNV, chromosome rearrangement,

Fig 4. The mapping sensitivity vs. False Discovery Rate (FDR) curves under different mapping

quality (mapQ) cutoffs for the simulated RNA-seq datasets. The mapQ varies from 0, 3, 6, 10, 13, 20,

then in increments of 10 up to the maximum allowed values of the indicated aligner. “Default” indicates

aligners’ default best hits; “AlignerBoost” indicates best hits via AlignerBoost mapping and filtering

procedures. A: Single-end (SE) mapping; B: Paired-end (PE) mapping.

doi:10.1371/journal.pcbi.1005096.g004
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RNA modification/editing,etc. It is very difficult to judge the effects of these elements on map-
ping due to a lack of "gold-standard" datasets. As a first effort, we selected public exome-sequenc-
ing (exome-seq) datasets from NCBI SRA, which utilized 4 widely-used commercial target-
enrichment kits, namely Agilent SureSelect v4.0, Agilent Haloplex V3, NimbleGen SeqCap EZ
v3.0, and Illumina TruSeq Exome (abbreviated hereafter to SureSelect,Haloplex, SeqCap EZ,
TruSeq, respectively), all of which are paired-end datasets. These kits are designed to selectively
purify pre-defined coding genomic regions (exome) that cover ~51.2 Mb, ~105.8 Mb, ~64.2 Mb
and ~62.1 Mb of the human genome, respectively. They therefore provide a decent proxy for
determining "correctmapping" of NGS reads. To be specific, a "correctlymapped" read is defined
when its mapped locus overlaps to any of the designed capture regions.

We randomly down-sampled all 4 exome-seq datasets to 10 million reads and generated
pseudo SE-datasets by dropping all reverse reads. These real datasets exhibit a very similar
quality pattern as our simulated dataset (S2 Fig). We tested them similarly as described for the
simulated datasets; note that all mappings were performed using the Bowtie2 aligner due to its
superior performance in conjunction with AlignerBoost as shown in the simulated results.
Since the exact true loci of these reads are unknown, we evaluated the total coverage depth of
designed capture regions instead of mapping sensitivity, and the mapping precision should be
treated as estimation. In general the result is very similar to the simulated datasets: if just con-
sidering the best hits without any mapQ restriction, AlignerBoost strongly increases the preci-
sion without significant loss or even gain of mapping sensitivity, while toward the extreme
mapQ cutoffs, AlignerBoost achieves a noticeably lower FDR rate with increased sensitivity
(Fig 5). A very similar overall mapping performance improvement is observed for both SE and
PE reads (Fig 5A and 5B). This fact holds true when we switched to the BWA (BWA-MEM)
aligner (S3 Fig), indicating the observedperformance improvement is not specific to a particu-
lar aligner. Notably, even with AlignerBoost filtering, the highest achieved precision was usu-
ally<90% (FDR> 0.1) except for the Agilent Haloplex platform; this is potentially caused by
non-specific binding between synthesized probes and target DNAs (i.e. binding to pseudo-
genes/repeats), and exaggerated by the possibility that flanking sequences of target regions
were pulled down during capture but after random fragmentation did not overlap capture
regions. In fact, the estimated mapping precisions are in agreement with previous studies [20],
though our results have consistently higher precision.

As discussed above, genetic variation could affect the mapping quality of NGS reads. To test
this, we provided the Hap-Map phase 3 (HapMap3) or 1000genomes (1000G) SNPs to
AlignerBoost to re-analyze the exome-seq datasets. Not surprisingly, there were only subtle
gains of mapping precision when providing AlignerBoostwith known SNPs (S7 Table), since
only a very small proportion (2~3%) of reads contained any known SNPs. Interestingly, the
overall coverage depth of target regions was also slightly increasedwhen known SNPs were
incorporated, giving AlignerBoost an additional advantage in detecting and confirming genetic
variants near highly variable regions in the genomes.

A recent option for RNA-seq studies is to apply target enrichment similar to that of exome-
seq [21, 22] experiments. This new approach, termed Capture-seq, gives us an opportunity to
closely examine the effect of AlignerBoost in RNA-seq studies. We compared the AlignerBoost
filtered vs. default alignments for 10 public Capture-seq libraries from human tissues and cells,
and found a profound reduction of the FDR, although the overall read depth of designed cap-
ture regions moderately suffered (Fig 6A and 6B).

As discussed above, it is usually more difficult to estimate the mapping accuracy for RNA-
seq data, mainly due to the potential spatial separation between capturing probes and sequenc-
ing reads by the presence of large introns. We therefore further evaluated the general effect of
AlignerBooston gene expression profiling using the Capture-seq libraries by comparing the

AlignerBoost Software Toolkit

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005096 October 5, 2016 8 / 20



Fig 5. The estimated mapping sensitivity vs. False Discovery Rate (FDR) curves under different

mapping quality (mapQ) cutoffs for the real exome-seq datasets. All mappings were performed using

Bowtie2. Mapping sensitivity is approximated by the read depth in capture regions. The mapQ varies from 0,

3, 6, 10, 13, 20, then in increments of 10 up to the maximum allowed values of the indicated aligner. “Default”

indicates aligners’ default best hits; “AlignerBoost” indicates best hits via AlignerBoost mapping and filtering

procedures. A: Single-end (SE) mapping; B: Paired-end (PE) mapping.

doi:10.1371/journal.pcbi.1005096.g005
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normalized transcript expression (in Read per Kb per Million or RPKM) on a gold standard
coding mRNA dataset (coding gene) as well as a pseudogene dataset (pseudogene)with or
without using AlignerBoost.Not surprisingly, compared to the default results, AlignerBoost
consistently increased gene expression of the coding genes, where the pseudogene expression is
decreased globally (Fig 7 and S4 Fig), especially for SE mapping (all p-values< 0.01 for both

Fig 6. The estimated mapping sensitivity vs. False Discovery Rate (FDR) curves under different

mapping quality (mapQ) cutoffs for the real capture-seq datasets. All mappings were performed using

STAR. Mapping sensitivity is approximated by the read depth in capture regions. The mapQ varies from 0, 3,

6, 10, 13, 20, then in increments of 10 up to the maximum allowed values of the indicated aligner. “Default”

indicates aligners’ default best hits; “AlignerBoost” indicates best hits via AlignerBoost mapping and filtering

procedures. A: Single-end (SE) mapping; B: Paired-end (PE) mapping. Replicate samples have same point

types but different line types.

doi:10.1371/journal.pcbi.1005096.g006
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replicates, paired t-tests). These results strongly indicate improved mapping accuracy of real
datasets, given that gold standard coding genes are more likely to be expressed than the pseu-
dogenes in the tissues and cells we tested.

Taken together, AlignerBoosthas practical implications in improving mapping accuracy in
most reference genome-basedNGS projects, thereby enabling more accurate downstream anal-
yses and better interpretation of results.

Comparison to similar tools

AlignerBoost is designed uniquely as ad hoc alignment optimization software to improve NGS
read mapping precision and overall performance. Although AlignerBoost is not an NGS
aligner, several published NGS aligners estimate mapping quality based on similar probabilistic
frameworks as AlignerBoost, such as Stampy [23] and BatAlign [24]. Stampy is a hybrid NGS
aligner that first uses BWA to map reads with close representatives in the reference dataset,
then maps the remaining reads using a hash based algorithm, in which large indels are treated
particularly carefully. BatAlign is an incremental method for accurate read alignment, which
integrates two novel strategies called “Reverse-Alignment” and “Deep-scan”. We compared the
AlignerBoost filtered results (with Bowtie2 aligner) of all the simulated DNA-seq datasets to
the default mapping results (running options in S1 Table) of Stampy and BatAlign in a similar
way of choosing different mapQ cut-offs (Fig 8). As expected, all three tools performed simi-
larly overall for genome and refExome datasets (Fig 8A, 8B, 8E and 8F). For RMSK datasets,
AlignerBoost clearly exhibits the overall best performance (Fig 8D and 8H); for pseudogene
datasets, Stampy performed best overall, while AlignerBoost reached the same level of low FDR

Fig 7. Gene expression differences between AlignerBoost filtered or “default “best alignments for two replicate Capture-seq datasets from

human brain tissues. Gene expression is represented by RPKM values. Coding gene (red) and pseudogene (blue) annotations are from GENCODE

project (v19). Values in parentheses show the mean gene expression changes of the two replicates. A: Single-end (SE) mapping; B: Paired-end (PE)

mapping.

doi:10.1371/journal.pcbi.1005096.g007
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but with relatively lower sensitivity (Fig 8C and 8G). This result suggests that for pseudogene
datasets the true mapping loci are often missed by the BWT (Burrows–Wheeler transform)
algorithm-based aligners tested in this study, while hash-based algorithms (such as Stampy)
are more sensitive. However, a disadvantage of hash-index based NGS aligners, including
Stampy, is that processing speeds are usually much slower [23].

Discussion

Increasing throughput and decreasing costs of employing NGS platforms for various genome-
wide experimental applications have made fast and accurate mapping of NGS reads to reference
genomes an imperative need. Though ultra-fast speed has been achieved in many state-of-art
NGS aligners, rarely have there been attempts to improve the mapping quality in terms of preci-
sion and sensitivity. Here, we developed a generalized software toolkit, AlignerBoost,which
we show dramatically boosts the mapping precision for most modernNGS aligners while main-
taining a similar level of sensitivity. AlignerBoostworks for almost any experimental design

Fig 8. The mapping sensitivity vs. False Discovery Rate (FDR) curves under different mapping quality (mapQ) cutoffs for the

simulated DNA-seq datasets using AlignerBoost and similar tools. The mapQ varies from 0, 3, 6, 10, 13, 20, then in increments of 10

up to the maximum allowed values of the indicated aligner. Different tools are labelled with different line points. AlignerBoost is used with

Bowtie2 aligner. A-D: Single-end (SE) mapping; E-H: Paired-end (PE) mapping; A/E: Genome, B/F: RefExome, C/G: Pseudogene, D/H:

RMSK.

doi:10.1371/journal.pcbi.1005096.g008
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requiring alignment to reference genomes, but has the greatest advantage for NGS libraries with
a considerable proportion of repetitive reads, such as pseudogenes, transposons and paralog
gene families that are usually contributing more than half of higher eukaryotic genomes.
AlignerBoost supports numerous customizable mapping parameters and users can expect up to
100% mapping precision in most cases if parameters are correctly chosen. The fact that pure
pseudogene or RMSK datasets can achieve up to 98% mapping precision makes it practical to
interrogate these “dark matter” genomic regions with good confidencewhen using AlignerBoost
with relatively short NGS reads. AlignerBoost is also able to greatly increase the mapping preci-
sion and sensitivity simultaneously for RNA-seq datasets regardless of whether a dedicated
RNA-seq aligner is used or not, making it especially useful when mapping RNA reads to a
poorly annotated genome. Furthermore, the ability to estimate the true "inserts" by "1DP" func-
tion of AlignerBoostmakes it particularly promising for mapping NGS reads with non-genome
fragments, which could result from untrimmed adapters/barcodes, RNA modification, exon/
intron boundaries or chimeric reads. At last, we speculate that AlignerBoostwill become a pow-
erful tool for identification of disease-associatedmutations and variations in the near future,
when personalized SNP and variation data will be available that can be utilized by AlignerBoost
to generate extremely high quality alignments.

Methods

AlignerBoost first generates executable scripts that call external NGS aligners in multiple-map-
ping enabled mode. To achieve optimal sensitivity, AlignerBoost also performs optional pre-
processing procedures such as quality-control (QC), adapter trimming, non-redundant tag
reduction and provides sequence statistic summaries. All of these pre-processing and mapping
steps are governed by tunable options, which are specifiedby a single user-provided configura-
tion file, and support many major NGS aligners (S8 Table). The executable scripts generate
standard SAM/BAM alignment files that contain all potential alignments (multiple-mapping
enabled) for every read.

Mapping quality of single-end reads

The core function of AlignerBoost is to estimate the mapping quality (mapQ) of an alignment
between an NGS read and a reference genome, given all potential alignments (multiple map-
ping) of that read. In this application, the mapQ is the phred-scaled posterior probability of a
mapping given all potential alignments, defined as:

mapQi ¼ � 10� lgð1 � PrðmapijΑÞÞ ð1Þ

where mapi and A is the ith mapping/alignment and all potential alignments for this read,
respectively. AlignerBoostuses a simple Bayesian method to calculate the posterior probability
by determining the likelihood of all potential alignments, as:

PrðmapijΑÞ ¼
PrðlociÞPrðalignijlociÞX

k2Α

PrðlockÞPrðalignkjlockÞ

¼
1

~Z
LiPrðalignijlociÞ

ð2Þ

where Li is the alignment length, Pr(aligni | loci) is the alignment likelihood for this locus, and ~Z
is the normalization constant. Note that we use the widely-accepted prior probability of a map-
ping from any given locus which is proportional to its alignment length as Pr(loci) = Li / LG
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where LG is the effective genome size. The alignment likelihood above is calculated in log10-s-
cale, as:

lgPrðalignijlociÞ ¼
XLi

j¼1

lgPrðAijjQijÞ

¼
XLi

j¼1

lgð1 � Q2PðQijÞÞ Aij ¼ match

Qij=s Aij ¼ mismatch

Qij=s � go Aij ¼ gap � open

Qij=s � ge Aij ¼ gap � ext

Qij=s � gs Aij ¼ soft � clip

Q̂i=s � gh Aij ¼ hard � clip

0 Aij ¼ N or P

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>;

ð3Þ

where Aij and Qij is the jth aligned position and base quality score (in phred scale) of the align-
ment, Q̂i is the estimated base quality of the (unobserved)hard-clipped bases, γo, γe, γs, γh are
the penalty scores for each alignment status, and s is the phredscore scaling factor (always -10
here). The Q2P(.) is a simple function for converting a phred-scale quality score back to the
error probability as:

Q2PðqÞ ¼ 10� q=10 ð4Þ

Practically the Q̂i was estimated using the average base quality of a small region immediately
adjacent to the hard-clipped bases. Note that alignment positions with N (intron) or P (padding)
status are ignored. The penalty scores used above can be considered the relative occurring
chance of each status compared to a mismatch in the unit of log10 scale, and can be controlled
in the configuration files.

Mapping quality of paired-end reads

For paired-end read alignments, the likelihoodof each mate of a paired alignment is calculated
independently as Eq (3); however the posterior probability of a mapping pair is calculated
jointly, as

PrðpairijΡÞ ¼
PrðlociÞPrðpairijlociÞX

k2Ρ

PrðlockÞPrðpairkjlockÞ

¼
1

~Z
Lfwd

i Lrev
i Prðalignfwd

i jloc
fwd
i ÞPrðalignrev

i jloc
rev
i ÞPrpairðloc

fwd
i ; locrev

i Þ

ð5Þ

where fwd and rev stand for forward and reverse mate of the pair, respectively, and
Prpairðloc

fwd
i ; locrev

i Þ is the pairing probability between read mates. In practice, the pairing
probability is calculated either as the Gaussian probability density of given mate distance
Prpairðloc

fwd
i ; locrev

i Þ ¼ φðdmate; m;s2Þ, where μ and σ2 are the estimated mean and standard
deviation of the fragment size between the forward and reverse mates, if they can be reliably
estimated, or as a constant if not (i.e. for RNA-seq reads with introns between read mates). It
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is of note that if one mate of a pair is missing (due to discordant distance, sequencing error,
or other reasons), function (5) is still used but the entire missing mate is treated as if every
base is "soft-masked". This treatment tends to prevent biased mapping qualities when paired-
end and unpaired alignments co-exist for certain reads, so the unpaired alignments will not
always be preferred over paired alignments.

Incorporation of known variations

To accommodate known variants including single nucleotide polymorphism (SNP), indels and
multiple nucleotide polymorphism (MNP), AlignerBoost can read in pre-defined variation
information from standard VCF/gVCF files, and uses a slightly modifiedmethod to calculate
the mapping qualities for enhanced accuracy. To be specific, the likelihoodof an alignment is
calculated either by function (3) or its enhanced version below:

lgPrðalignijlociÞ ¼
XLi

j¼1

lgPrðAijjQijÞ

¼
XLi

j¼1

lgð1 � Q2PðQijÞÞ Aij ¼ match

Qij=s Aij ¼ mismatch

Qij=s � go Aij ¼ gap � open

Qij=s � ge Aij ¼ gap � ext

Qij=s � gs Aij ¼ soft � clip

�Qi=s � gh Aij ¼ hard � clip

0 Aij ¼ N or P

Qij=s � gv Aij ¼ known SNP

Qij=s � gg Aij ¼ known indel

Qij=s � gb Aij ¼ known MNP

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð6Þ

where the biological explanation of the penalty-scores γv, γg, and γb are similar as in Eq (3) for
each indicated known variation types (see http://www.ncbi.nlm.nih.gov/books/NBK44447/ for
their detailed definitions), and their default values can be controlled in the user-specified con-
figuration files. For variations with allelic frequency (AF) available, AlignerBoost estimates
these penalty-scores as

g ¼ � lgðAFaltÞ; ð7Þ

where AFalt is the allele frequency of the observed alternate allele from the alignment. Then the
largest value of the likelihood calculated by Eqs (3) or (6) calculated for each known SNP is
used for subsequent mapQ calculation; this assumes the SNPs are independent if multiple ones
are found in a same alignment, which is believed to be almost always true due to the low fre-
quency of common SNPs and relative small NGS read size.

Determining the actual insert range

To re-estimate the actual DNA fragment (insert) range given an alignment, a one-dimensional
dynamic programming (1DP) algorithm is implemented to find the insert range that
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maximizes an insert score S; the recurrence relation of S is:

SðiÞ ¼

0 i ¼ 0

max
Sði � 1Þ þ Ai

0

( )

i ¼ 1; 2; . . . ; n
ð8Þ

8
><

>:

Similar to Eq (3), Ai is defined as the alignment score at position i as:

Ai ¼

am Ai ¼ match

ax Ai ¼ mismatch

� go Ai ¼ gap � open

� ge Ai ¼ gap � ext

� gs Ai ¼ soft � clip

� gh Ai ¼ hard � clip

0 Ai ¼ N or P

ð9Þ

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

where am and ax have similar biological explanations as the other penalty scores described
above. The mismatch and indel information is extracted from the "Cigar" elements and "MD:Z"
mismatch tags from the SAM/BAM alignment records, if available.

Other utility functions

Besides the core function of generating and filtering high quality alignments, AlignerBoost also
includes many other utilities designed to fit various needs for end users, such as read QC, quick
classification for SAM/BAM, BED, VCF files, and conversion from SAM/BAM files to Wig and
various coverage files. The complete list of these functions can be found on the website.

Implementations

AlignerBoost is implemented in pure Java as a unified program, similar to the latest Picard
tools or GATK tools [25, 26]. For SAM/BAM file manipulations and VCF file processing,
Htslib JDK from Picard tools is used and packed along with the AlignerBoost executable file. It
is of note that during the 1DP process, the "Cigar" elements and "MD:Z" mismatch tags are
modified to maintain the correctness of the SAM records; therefore AlignerBoost filtered align-
ments are ready-to-use for further analysis such as variation calls. Besides, AlignerBoost retains
many mapping quality metrics such as mismatch and indel numbers and alignment likelihood
as customized tags in the output BAM files. Please refer to the AlignerBoostwebsite for a com-
plete list of these customized tags.

Performance

The core function of AlignerBoost is to calculate the posterior mapping probability (mapQ) of
an alignment using formulas (2), (3), (5) and (6), which is in linear time complexity regarding
the alignment length. The additional time and space complexity for 1DP estimation of insert
range is also linear. Therefore, the overall performance of AlignerBoost is fast. In our bench-
mark tests, AlignerBoost can process 1 million alignments (from the total genome dataset) in
27.9 and 25.8 seconds for 100 bp SE or PE reads, respectively, on a Linux workstation using a
single Intel Xeon 3.70 GHz core. These numbers are 28.2 and 29.0 seconds if we enable the
1DP function. Finally, we found that the major limitation of AlignerBoostperformance is disk
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IO, so we didn't implement multi-threading, which often offers limited gain of processing
speed at the expense of much larger memory footprint.

Accession numbers

The NCBI SRA accession numbers for the Exome-seq datasets are SRR1609896, SRR1573550,
SRR1611182 and ERR364421 for the SureSelect,Haloplex, SeqCap EZ and TruSeq enrichment
kits, respectively. The SRA accession numbers for the Capture-seq datasets are SRR1576165,
SRR1576167, SRR1576146, SRR1576147, SRR1576148, SRR1576149, SRR1576155,
SRR1576180, SRR1576152, SRR1576177 for K562 cells, liver, lung, ovary, brain respectively,
each with 2 replicates. The expression abundance (in RPKM) for all capture-seq datasets were
calculated by the featureCounts program [27]. Coding gene and pseudogene annotations are
downloaded from GENCODE project (v19, http://www.gencodegenes.org/), and only those
overlapping with the designed capturing regions are used.
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